депланация поперечного сечения - translation to ρωσικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

депланация поперечного сечения - translation to ρωσικά

Теорема об устранении сечения; Теорема Генцена об устранении сечения; Элиминационная теорема; Устранимость сечения

депланация поперечного сечения      
( перемещение точек поперечного сечения тонкостенного стержня, преобразующее его в кривую поверхность или совокупность плоскостей )
gauchissement des sections planes

Ορισμός

Дедекиндово сечение

одно из арифметических определений действительных чисел (См. Действительное число) без привлечения геометрического толкования. Предложено в 1872 немецким математиком Р. Дедекиндом. Д. с. расширяет множество рациональных чисел до множества всех действительных чисел путём введения новых, иррациональных чисел, одновременно упорядочивая их.

Βικιπαίδεια

Устранимость сечений

Устранимость сечений (теорема Генцена, элиминационная теорема) — свойство логических исчислений, согласно которому всякую секвенцию, выводимую в данном исчислении, можно вывести без применения правила сечений. Играет фундаментальную роль в теории доказательств и важную методологическую роль в математической логике в целом в связи с тем, что предоставляет конструктивный метод доказательства непротиворечивости, в частности, для классической и интуиционистской логик первого порядка.

Для классического и интуиционистского исчислений секвенций свойство доказано Генценом в 1934 году. В 1953 году высказана гипотеза Такеути, согласно которой устранимость сечений имеет место для простой теории типов и соответствующих ей логик высших порядков, впоследствии она нашла подтверждение — для классической логики второго порядка устранимость сечений доказал Тейт, для простой теории типов — Такахаси и Правица, вскоре найдены доказательства для серии неклассических теорий высших порядков (Драгалин) и развитых теорий типов (Жирар для системы F).

Символическая формулировка: пусть Γ Θ , Φ {\displaystyle \Gamma \vdash \Theta ,\Phi } и Φ , Λ Δ {\displaystyle \Phi ,\Lambda \vdash \Delta }  — доказуемые секвенции исчисления G {\displaystyle G} ; если Γ , Λ Δ , Θ {\displaystyle \Gamma ,\Lambda \vdash \Delta ,\Theta }  — секвенция исчисления G {\displaystyle G} , то она доказуема.